Gambler's Oasis was founded on the principal of providing top quality casino slot machines and gaming devices to your home at the most reasonable price. Whether you want one slot machine or twenty slot machines, your home game room can become an oasis, a refuge, a haven for fun for you, your family and friends. Slot machine technicians can learn on the job or through independent study of manuals. However, completing a training program can help technicians keep up-to-date on new machines and become more. Hello Python Forum, as a learning experience I created a very basic 'Slot' machine. It's far from perfect and could definitely use many upgrades, more winning options, pay tables, etc. As for this project I was mostly focusing on functionality, and I may continue working on it from time to time to make it better (more interesting to play).
I was bored and that can be a dangerous thing. Like doodling on the phone book while you are talking on the phone, I doodle code while answering questions on DIC. Yeah, it means I have no life and yes it means I was born a coder. During this little doodle I decided to make a slot machine. But not your standard slot machine per say, but one designed a little bit more like the real thing. Sure it could have been done a little more simpler and not even using a Wheel class at all, but what fun is that? In this entry I show the creation of a slot machine from a bit more of a mechanical aspect than a purely computerized one. It should provide a small sampling of classes and how they can represent real life machines. We cover it all right here on the Programming Underground!
So as I have already said, this little project was just something to play around with. It turned out kinda nice, so I thought I would share it. But what did I mean about it being mechanical in nature? Well, if you have ever played a real slot machine, not the digital ones they have in casinos now, you would see a metal case with a series of wheels. Typically it would be three wheels with pictures on them. When you put your money in and pull the handle the wheels would be set into motion. They would spin and then the first wheel would stop, followed by the second and then the third. After they have all stopped, the winnings are determined and you are paid out in coinage or credits.
I thought, why not be a bit mechanical in this slot machine design and create the wheels as a class called “Wheel” and give it the ability to spin independently of the other wheels? Have the wheel keep track of which picture (or in our case number) is flying by and report the results to the actual slot machine class. I could have done this mechanism without the need of a wheel at all and instead load up an array and have it randomly pick a number from the wheel. Little slimmer, little more efficient but wouldn’t show much programming theory.
What do we gain by recreating these Wheel classes and spinning them independently? Well, you gain a slight bit of flexibility. Independently we are able to control the speed of the spinning if we wanted to, we are able to grasp the idea of the wheel as a concept in our mind and manipulate it. We could easily built in features like if the wheel lands on a certain number it will adjust itself. Like some slots in Vegas, if you land on lets say a rocket in the center line, the machine would see the rocket and correct the wheel to spin backwards 1 spot (in the direction of the rocket as if the rocket was controlling the wheel). We could spin one wheel one way and another wheel another. We could inherit from that wheel and create a specialized wheel that does a slew of new different behaviors. All encapsulated into one solid object making the actual Machine class oblivious to the trickery of the wheel itself… encapsulation at its finest!
The machine class we create will contain 3 pointers. Each to one of the wheels. The machine itself will be in charge of a few different tasks. Taking money, issuing and removing credits, determining when to spin, telling each of the wheels to spin and checking our winnings based on some chart we create. It has enough on its plate than worrying about the wheels and reading their values.
So lets start with our Wheel class and its declaration/implementation…
wheel.h
As you can see the wheel itself is not a difficult concept to envision. The bulk of the work is in the read() method. Here we simply read the values from our internal array of integers (the values on the wheel) and return those values as an array of the three integers… representing the visible column. This column will then be loaded into our 2-Dimensional Array back in the Machine class. The 2D array represents the view or screen by which the user sees the results. Remember that the user never gets to see the entire wheel. Only the 3 consecutive values on the face of the wheel.
Here is how it may look in the real world. We have our machine with the three wheels and our 2D array called “Screen” which acts as our viewing window. Each wheel will report its values and those values will be put into the screen…
Below is our machine class…
machine.h
Slot Machine Program C++
This looks like a lot of code but really it is not if you look at each function. Most of them are very very simple to understand. We have a spin method which essentially spins each of the wheels, reads their values back from the Wheel class into a pointer (representing each column), then they are loaded into the 2D array one column at a time (our view screen), printed for the user to see the results and lastly the winnings are checked. The checkwinnings() method determines which rows to check based on the amount of the bet. If they chose 1 line, it checks for winning combinations on the middle row only. If they choose 2 lines, it checks the middle and top lines, 3 line bet checks all three horizontal rows, 4 line bet checks the first diagonal as well and 5 line bet checks both diagonals in addition to the lines.
How does it check the lines? Well each line is given to the checkline() helper function which compares the 3 values of the line against an enumerated type of various symbols. Here we are just assigning a symbol against each numbered value to help the programmer determine which numbers correspond to which winning combos. For instance, luckyseven represents the number 3 in the enumeration. So if it runs across a line with 3 number 3s, then it knows it hit the grand jackpot and credits the player 1000. This method makes things easy because if we ever wanted to change the win patterns later, we could change the enum and checkline method to do so. We could also build in multiple types of symbols and even let the user choose what slot machine game they want to go by. It becomes very flexible and is a testament to great design!
Lastly we can put some tests together just to show some the various aspects of how this thing works and how the programmer can use the classes…
slotmachine.cpp
This simply inserts a 5 dollar bill and a coin for good luck. Then bets 5 lines and spins. Despite the outcome we go and bet five lines again and spin once more. Hopefully we win something this time around! But either way, those are the classes for you and I hope you like them. As always, all code here on the Programming Underground is in the public domain and free for the taking (just don’t cause a mess in isle 3, I am tired of running out there for cleanup). Thanks for stopping by and reading my blog. 🙂
This is a slot machine that resembles the real slot machines in the casinos. To create the project, you need to insert three image boxes into the form and program them so that they will display a set of three different pictures randomly when the user presses on the spin button. It involves a randomization process. Next, a timer needs to be incorporated into the procedures so that the program can produce animated effects. In addition, you can also insert the Microsoft Multimedia Control so that it can play sounds in synchronization with the spinning of the slot machine as well as when the player hits the jackpot. You can design any interface you like. We have created an interface as shown below:
The Interface
The Video Demo
The Code for Spin Sub Procedure
The three random variables a, b and c will be randomly assigned the values 1, 2 and 3 using the RND function. Based on these three random numbers, three different pictures will be loaded into the three image boxes randomly using the LoadPicture method. Animated effects are created by putting the above procedure under the control of Timer1, which will call the spin procedure after every interval until it fulfills a certain condition. Sounds are also added using the Microsoft Multimedia Control to make the game more realistic and interesting. The amount won is controlled by the If...Then...End If statements
It is important that you define the correct path for the LoadPicture method, otherwise the program will not be able to run. For example, our path is C:VB programImagesgrape.gif, you need to create the necessary folders and have the necessary image file if you wish to copy the program directly. If you place the image file in a differently folder, you need to modify the path accordingly. For example, if your image file is in D:VB programImagesgrape.gif, then you need to modify the LoadPicture method to LoadPicture('D:VB programImagesgrape.gif').
Slot Machine Program In C++
If you wish to use our image files, you can download from the links below:
sound and the other for the jackpot sound. Below is the video demo of the slot machine simulator.Copyright©2008 Dr.Liew Voon Kiong. All rights reserved |Contact|Privacy Policy